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Abstract We consider several classes of planar polycyclic graphs and derive recur-
rences satisfied by their Tutte polynomials. The recurrences are then solved by com-
puting the corresponding generating functions. As a consequence, we obtain values
of several chemically and combinatorially interesting enumerative invariants of con-
sidered graphs. Some of them can be expressed in terms of values of Chebyshev
polynomials of the second kind.

1 Introduction

A deletion-contraction invariant of a graph G is an invariant that satisfies and can be
computed via some kind of deletion-contraction recurrence over the edges of G. The
Tutte polynomial is the most general such invariant. It is a powerful analytic tool that
encodes important information about the graph. The chromatic polynomial, the flow
polynomial, and the tension polynomial all arise as its specializations, and its special
evaluations yield several important enumerative invariants, such as, e.g., the number of
spanning trees, the number of connected subgraphs, the number of acyclic orientations,
etc. In this paper we compute the generating function for the Tutte polynomials of a
class of polygonal chains and show that many enumerative invariants of such graphs
can be expressed as values of Chebyshev polynomials of the second kind.
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2 Definitions and preliminaries

2.1 Tutte polynomial

We say that τ(G) is a deletion-contraction invariant of G if it can be computed by
performing a series of deletions and contractions of edges of G. The deletion of an
edge e ∈ E(G) results in the graph G − e on the same set of vertices without e, while
the contraction of e results in the graph G/e in which e is removed and its end-vertices
are identified. Typical examples of such invariants are the number of spanning trees
τ(G) and the chromatic polynomial χ(G, λ). The respective recurrences are

τ(G) = τ(G − e) + τ(G/e)

and

χ(G, λ) = χ(G − e, λ) − χ(G/e, λ).

The initial conditions are usually specified for empty graphs (i.e., the graphs without
edges) and/or for graphs with only loops and/or bridges.

The Tutte polynomial T (G; x, y) of a graph G is, in a sense, the most general
invariant of this type. It can be defined in terms of Whitney’s rank generating function
of G [10], but we find more convenient an equivalent definition that emphasizes its
deletion-contraction nature. It was introduced in 1954 by Tutte [8], who also estab-
lished some of its basic properties [9]. For a more thorough introduction we refer the
reader to the final chapter of [1].

The Tutte polynomial of a graph G is defined as

T (G; x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if E(G) is empty

x · T (G/e; x, y) if e is a bridge

y · T (G − e; x, y) if e is a loop

T (G − e; x, y) + T (G/e; x, y) if e is any other edge.

It is clear that T (G; x, y) has nonnegative integer coefficients and it can be shown that
the definition is independent of the choice of e.

It is clear from the definition that the Tutte polynomial of any forest G with m edges
is given by T (G; x, y) = xm . Similarly, if G is a graph with one vertex and r loops,
then T (G; x, y) = yr . It follows easily by induction on n that the Tutte polynomial
of the cycle on n vertices is

T (Cn; x, y) = xn−1 + · · · + x2 + x + y.

By exchanging the roles of x and y we obtain the Tutte polynomial of the graph on
two vertices connected by n parallel edges, the dual graph of Cn . It turns out that this
is valid for all planar graphs.
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Theorem 2.1 Let G be a planar graph and G∗ its dual. Then T (G; x, y) =
T (G∗; y, x).

We quote another property that will be useful in the rest of the paper.

Theorem 2.2 The Tutte polynomial of a graph G is equal to the product of Tutte
polynomials of its blocks. (A block is a maximal connected subgraph of G without a
cut-vertex.)

We conclude this subsection by listing some special evaluations of Tutte polyno-
mials that yield enumerative invariants of G. We refer the reader to [1] for definitions
of the terms not given here. In order to avoid terminological ambiguities, we suppose
that G is a connected graph. Then:

T (G; 1, 1) is the number of spanning trees of G;
T (G; 2, 1) is the number of spanning forests of G;
T (G; 1, 2) is the number of connected spanning subgraphs of G;
T (G; 0, 2) is the number of strongly connected orientations of G;
T (G; 2, 0) is the number of acyclic orientations of G;
T (G; 1, 0) is the number of acyclic orientations of G with a single source;
T (G; 2, 2) = 2|E(G)|.

It is clear from the above list that it is highly desirable to know the Tutte polynomial,
since it encodes a wealth of combinatorial information about the graph. However,
it is not easy, since in the general case the complexity can be exponentially high.
Fortunately, for several classes of chemically interesting graphs there exist efficient
methods that yield explicit formulas for their Tutte polynomials.

2.2 Polygonal chains and other planar polycyclic graphs

In this subsection and in the rest of the paper we consider planar graphs whose all
bounded faces are cycles. The class is broad enough to include several chemically
interesting families, such as cacti, polyphenylenes, and benzenoid chains.

A cactus graph is a connected graph in which no edge is contained in more than one
cycle. Hence, each block of a cactus graph is either a cycle or an edge. A cactus graph
in which all blocks are cycles of the same size m is called m-uniform cactus graph. For
example, 6-uniform cactus is called a hexagonal cactus. A polyphenylene is a graph
obtained from a hexagonal cactus by expanding each of its cut-vertices to an edge.
A polyphenylene (a cactus) in which no hexagon has more than two cut-vertices is
called a polyphenylene chain (a cactus chain). For more information on enumerative
invariants of chemically interesting cacti and polyphenylenes we refer the reader to
references [3,4].

The interior dual G0 of a planar graph G is obtained from the dual graph G∗ by
omitting the vertex corresponding to the unbounded face and all incident edges. It is
clear from the definition that inner duals of cacti and polyphenylene are disconnected
graphs. If the interior dual of a planar graph G is a tree, we say that G is a catacon-
densed polygonal cluster; if G0 is isomorphic to a path, we say that G is a polygonal
chain. If all its faces are of the same size, we call the cluster or the chain uniform.
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The number of bounded faces is called the length of the chain. The terminology is
borrowed from benzenoid chemistry; the 6-uniform polygonal clusters are known as
catacondensed benzenoid graphs, and similar for chains. We refer the reader to [6] for
more information on benzenoid graphs.

The last class of graphs we consider here are book graphs. A book graph on n
sheets is a collection of n cycles that all share exactly one of their edges. Again, if all
cycles are of the same length, say k, we have a k-uniform book. The most interesting
special case is k = 4, the Cartesian product of a star and K2.

3 Main results

3.1 Cacti and polyphenylenes

Let G be a cactus graph with m bridges and n blocks Bi , where each Bi is a cycle of
length ki . The following result is a direct consequence of Theorem 2.2.

Theorem 3.1

T (G; x, y) = xm
n∏

i=1

T (Cki ; x, y).

If the cactus G is k-uniform, the above expression can be simplified.

Corollary 3.2 Let Gn(k) be a k-uniform cactus with n blocks. Then

T (Gn(k); x, y) = (xk−1 + · · · + x2 + x + y)n .

From Corollary 3.2 we can immediately read out a number of invariants.

Corollary 3.3 Let Gn(k) be a k-uniform cactus with n blocks. Then Gn(k) has kn

spanning trees, (k + 1)n connected spanning subgraphs, (2k − 1)n spanning forests
and (2k − 2)n acyclic orientations.

We see that all those invariants are insensitive to the positions of cut-vertices, while
some other invariants, like the number of matchings and the number of independent
sets, depend strongly on the distribution of cut-vertices [3,4]. This is not a great
surprise, given the very weak nature of connectivity within cacti. In the next subsection
we will see that this behavior is preserved also in polygonal chains.

3.2 Uniform polygonal chains

This subsection is the central part of the paper. In it we consider uniform polygonal
chains and we study how their Tutte polynomials depend on their length. We show
that the Tutte polynomials satisfy a two-term recurrence with polynomial coefficients.
Such recurrences can be solved to derive the explicit formulas; however, we prefer to
compute the corresponding generating functions. Our results complement and gener-
alize those obtained in recent reference [5].
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First we show that the Tutte polynomial does not depend on the shape of a chain.

Theorem 3.4 Let Gn(k) and Hn(k) be two k-uniform polygonal chains of the same
length n. Then T (Gn(k); x, y) = T (Hn(k); x, y).

Proof The claim follows from Theorem 2.1 and the fact that Gn(k) and Hn(k) have
isomorphic duals. ��

Now we can look at any k-uniform chain consisting of n cycles. By applying the
deletion-contraction procedure on one of its terminal polygons, one can arrive at a two-
term recurrence relation with polynomial coefficients. The procedure is completely
analogous to the one described in reference [5] for benzenoid chains. In order to
simplify the notation, we will omit k whenever it cannot lead to a confusion.

Theorem 3.5 Let Gn be a k-uniform polygonal chain of length n. Then

T (Gn; x, y) = p(x, y)T (Gn−1; x, y) + q(x, y)T (Gn−2; x, y),

where the coefficient polynomials are given as

p(x, y) = xk−1 − 1

x − 1
+ y, q(x, y) = −xk−2 y.

The initial conditions are

T (G0; x, y) = T0(x, y) = x, T (G1; x, y) = T1(x, y) = x
xk−1 − 1

x − 1
+ y.

Proof Let e be any of k − 1 edges shared by one of the terminal polygons and the
unbounded face. (We call such edges terminal.) Its deletion leaves Gn−1 with k − 2
edges attached; since each of them is a cut-edge, the Tutte polynomial of Gn − e is
given by xk−2 · T (Gn−1; x, y). Contraction of e results in a graph G ′

n consisting of
Gn−1 with a cycle of length k−1 attached along one of its terminal edges. By applying
the deletion-contraction operation on one of the edges of terminal Ck−1, we obtain
again a copy of Gn−1, this time with k − 3 cut-edges attached, and a new graph, G ′′

n ,
consisting of Gn−1 with a cycle of length k − 2 attached at one end. We proceed until
we arrive at a graph G(k−2)

n which is Gn−1 with one of its terminal edge replaced by
two parallel edges. By now we have

T (Gn; x, y) = (xk−2 + xk−3 + · · · + x)T (Gn−1; x, y) + T (G(k−2)
n ; x, y).

Now, deleting one of the parallel terminal edges of G(k−2)
n leads to another copy of

Gn−1, while its contraction results in G ′
n−1 with one loop attached to one if its terminal

vertices. Hence,

T (Gn; x, y) = (xk−2 + xk−3 + · · · + x + 1)T (Gn−1; x, y) + y · T (G ′
n−1; x, y).
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The claim now follows by noticing that

T (G ′
n−1; x, y) = T (Gn−1; x, y) − xk−2 · T (Gn−2; x, y),

collecting the terms and expressing the results in a compact form. ��
From the above recurrence one could, in principle, obtain explicit formulas for

T (Gn; x, y). However, the obtained expression tend to be rather complicated. An
example (for k = 6) can be found in [5]. Instead, we prefer to compute the generating
function for the Tutte polynomials of Gn .

The generating function F(t) of a sequence fn is a formal power series F(t) =∑∞
n=0 fntn . Generating functions of sequences of polynomials are defined analo-

gously. For example, the generating function of the sequence of Chebyshev polyno-
mials of the second kind Un(x) is given by

U (x, t) =
∞∑

n=0

Un(x)tn = 1

1 − 2xt + t2 .

Let us denote by T (x, y, t) the generating function of the sequence T (Gn; x, y), i.e.,

T (x, y, t) =
∞∑

n=0

T (Gn; x, y)tn .

By a straightforward computation we obtain the following result.

Theorem 3.6

T (x, y, t) = x − (x − 1)yt

1 − p(x, y)t − q(x, y)t2 .

Now, by substituting special values of x and y, we obtain the generating functions for
the enumerative invariants mentioned in the introduction. In many cases the resulting
expressions can be interpreted in terms of values of Chebyshev polynomials.

Corollary 3.7 Let Gn be a k-uniform polygonal chain of length n. Then

(a) The number of acyclic orientations of Gn with a single source is (k − 1)n;
(b) The total number of acyclic orientations of Gn is given by 2(2k−1 − 1)n;
(c) The number of strongly connected cyclic orientations of Gn is 2 · 3n−1;
(d) The number of spanning trees in Gn is Un(k/2);

(e) The number of connected spanning subgraphs of Gn is 2n/2Un

(
k+1
2
√

2

)
;

(f) The number of spanning forests of Gn is
(√

2
k−2

)n−1
Un+1

(√
2

k−2
)

.

The proof follows by substituting the corresponding values of x and y and inter-
preting the obtained generating functions in terms of powers and/or Chebyshev poly-
nomials. The above values are listed approximately in order of increasing complexity.

For the case of benzenoid chains we list explicitly the numbers of various classes
of spanning subgraphs.
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Corollary 3.8 Let Gn be a benzenoid chain of length n. Then

(a) The number of spanning trees in Gn is Un(3);

(b) The number of connected spanning subgraphs of Gn is 2n/2Un

(
7

2
√

2

)
;

(c) The number of spanning forests of Gn is 4n−1Un+1(4).

All results follow from specializing x and y in the generating function for the Tutte
polynomials of benzenoid chains,

TB(x, y, t) = x + (x − 1)yt

1 − (x4 + x3 + x2 + x + 1 + y)t + x4 yt2 .

The chemical and combinatorial interpretation of sequences enumerating the con-
nected spanning subgraphs and spanning forests seem to be new; the first one appears
as sequence A186446 in the Online Encyclopedia of Integer Sequences [7] without
any comments, while the second one is not there. The sequence enumerating the span-
ning trees has many combinatorial interpretations (sequence A001109 of [7]), some
of them even chemically relevant ([2], pp. 301, 302), but the number of spanning trees
of a benzenoid chain is not mentioned.

For some other values of k we obtain familiar sequences, but their interpretation in
terms of spanning subgraphs of polygonal chains also seems to be new. For example,
no interpretation in terms of the number of spanning trees and forests is mentioned for
sequences A001906 (the even-indexed Fibonacci numbers) and A003480 that count
them in Gn(3). The exception seems to be the case k = 4, where both sequences count-
ing spanning trees and spanning forests are recognized in [7] as sequences A001353
and A022026, respectively.

3.3 Book graphs

The main difference between the (uniform) polygonal chains and the (uniform) book
graphs is that in the former case there are two special, terminal, cycles, while in the case
of books all their sheets are equivalent. Nevertheless, their Tutte polynomials satisfy
similar recurrences. For the case of simplicity, we consider here only 4-uniform books,
but the results could be easily verified for other values of k.

Theorem 3.9 Let Bn be a 4-uniform book on n sheets. Then the Tutte polynomials of
Bn satisfy the two-term linear recurrence with polynomial coefficients

T (Bn; x, y) = (2x2 + 2x + 1 + y)T (Bn−1; x, y)

−(x2 + x + 1)(x2 + x + y)T (Bn−2; x, y)

with the initial conditions

T (B1; x, y) = x3 + x2 + x + y, T (B0; x, y) = x .

Proof We start by selecting any of n cycles C4 and applying the deletion-contraction
procedure to any of its edges that is not shared with other cycles. This results in Bn−1
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with two cut-edges attached and in B ′
n , consisting of Bn with one C4 replaced by a

triangle. By deleting and contracting an edge of that triangle we obtain Bn−1 with
one cut-edge attached and B ′′

n , that is Bn−1 with the central edge (the “spine of the
book”) replaced by two parallel edges. Finally, by deleting and contracting one of those
parallel edges we obtain another copy of Bn−1 and a set of n − 1 triangles sharing a
vertex with a loop attached at that vertex. In terms of Tutte polynomials, it reads as

T (Bn; x, y) = (x2 + x + 1)T (Bn−1; x, y) + y · T (C3; x, y)n−1.

This is a non-homogeneous linear recurrence of the first order. It can be made homo-
geneous by writing it for T (Bn−1; x, y), multiplying it through by T (C3; x, y) and
then subtracting it from the original recurrence. The result is the recurrence stated in
the theorem. ��

It is a matter of routine computation to obtain the generating function for
T (Bn; x, y).

Theorem 3.10

B(x, y, t) =
∞∑

n=0

T (Bn; x, y)tn

= x − (x3 + x2 + xy + y)t

1 − (2x2 + 2x + 1 + y)t + (x2 + x + 1)(x2 + x + y)t2

The number of spanning trees of Bn can now be obtained by taking x = y = 1. That
yields the generating function 1−2t

(1−3t)2 whose coefficients count the spanning trees.

Corollary 3.11

τ(Bn) = (n + 3)3n−1

The sequence (n + 3)3n−1 appears as A006234 in [7], and the number of spanning
trees of Bn is mentioned as a conjectured combinatorial interpretation. Hence our
result proves that conjecture. We mention in passing that τ(Bn) can be also expressed
in terms of Chebyshev polynomials, τ(Bn) = 3n−1Un+2(1).

We leave the derivation of recurrence for other values of k to the interested reader.

4 Concluding remarks

The Tutte polynomial encodes a wealth of combinatorial information about the under-
lying graph. In this paper we have computed Tutte polynomials for many chemically
interesting graphs, such as cacti, polyphenylenes and benzenoid chains. We have shown
that several classes of spanning subgraphs of such graphs are enumerated by sequences
of values of Chebyshev polynomials, thus providing new combinatorial interpretations
for those sequences. In particular, we have proved a conjecture about the number of
spanning trees in the Cartesian product of a star and K2.
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The methods applied here could also be used to compute Tutte polynomials (and
hence enumerative invariants) for some other chemically interesting graphs such as,
e.g., phenylene chains and prisms. They could, in principle, also be applied to branched
polymers, but it seems that the recurrences get more and more complicated. Never-
theless, it might be worth trying at least for some special cases.
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